A Geometric Proof that Is Irrational and a New Measure of Its Irrationality
نویسنده
چکیده
1. INTRODUCTION. While there exist geometric proofs of irrationality for √2 [2], [27], no such proof for e, π , or ln 2 seems to be known. In section 2 we use a geometric construction to prove that e is irrational. The proof leads in section 3 to a new measure of irrationality for e, that is, a lower bound on the distance from e to a given rational number, as a function of its denominator. A connection with the greatest prime factor of a number is discussed in section 4. In section 5 we compare the new irrationality measure for e with a known one, and state a number-theoretic conjecture that implies the known measure is almost always stronger. The new measure is applied in section 6 to prove a special case of a result from [24], leading to another conjecture. Finally, in section 7 we recall a theorem of G. Cantor that can be proved by a similar construction.
منابع مشابه
A Generalization to Cantor Series of Sondow’s Geometric Proof that e Is Irrational and His Measure of Its Irrationality
In 2006, Jonathan Sondow gave a nice geometric proof that e is irrational. Moreover, he said that a generalization of his construction may be used to prove the Cantor’s theorem. But, he didn’t do it in his paper, see [1]. So, this work will give a geometric proof to Cantor’s theorem using Sondow’s construction. After, it is given an irrationality measure to some Cantor series, for that, we gene...
متن کاملIrrationality of certain infinite series II
In a recent paper a new direct proof for the irrationality of Euler's number e = ∞ k=0 1 k! and on the same lines a simple criterion for some fast converging series representing irrational numbers was given. In the present paper, we give some generalizations of our previous results. 1 Irrationality criterion Our considerations in [3] lead us to the following criterion for irrationality, where x...
متن کاملLittle q-Legendre polynomials and irrationality of certain Lambert series
Certain q-analogs hp(1) of the harmonic series, with p = 1/q an integer greater than one, were shown to be irrational by Erdős [9]. In 1991–1992 Peter Borwein [4] [5] used Padé approximation and complex analysis to prove the irrationality of these q-harmonic series and of q-analogs lnp(2) of the natural logarithm of 2. Recently Amdeberhan and Zeilberger [1] used the qEKHAD symbolic package to f...
متن کاملIrrationality of certain infinite series
In this paper a new direct proof for the irrationality of Euler's number e = ∞ k=0 1 k! is presented. Furthermore, formulas for the base b digits are given which, however, are not computably effective. Finally we generalize our method and give a simple criterium for some fast converging series representing irrational numbers.
متن کاملThe Group Structure for Ζ(3)
1. Introduction. In his proof of the irrationality of ζ(3), Apéry [1] gave sequences of rational approximations to ζ(2) = π 2 /6 and to ζ(3) yielding the irrationality measures µ(ζ(2)) < 11.85078. .. and µ(ζ(3)) < 13.41782. .. Several improvements on such irrationality measures were subsequently given, and we refer to the introductions of the papers [3] and [4] for an account of these results. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The American Mathematical Monthly
دوره 113 شماره
صفحات -
تاریخ انتشار 2006